1. Udowodnij, że zaprzeczenie implikacji jest prawem rachunku zdań.
Wykażemy to w poniżej tabelce:
p |
q |
 |
 |
 |  |  |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
Widzimy zatem, że dla dowolnych wartości zdań składowych p i q zawsze otrzymamy 1, co świadczy o tym, że zaprzeczenie implikacji jest prawem rachunku zdań.
2. Wykonaj odpowiednie obliczenia i oceń, które z podanych zdań jest prawdziwe, a które fałszywe. (zadanie z matury próbnej 2005, poziom podstawowy - woj. pomorskie)
p: -32=9
q: = 17
r: = 
Oceń wartość logiczną zdania ( ) r.
Na początek dochodzimy do wniosku, że zdania p i q są fałszywe, natomiast r jest prawdziwe.
Budujemy tabelkę:
A więc zdanie to jest prawdziwe.
Jeżeli nie jesteś pewny, czy rozumiesz, zajrzyj do naszego kompendium!
|
|
© 2002-2008 Copyright by OmikronGroup. All rights reserved.
Typ dokumentu: W3C DTD HTML 4.01 Transitional
Kodowanie polskich znaków: ISO-8859-2
Witryna wykorzystuje cookies w celu poprawnej realizacji dostarczanych usług
i informacji oraz w celach gromadzenia anonimowych informacji statystycznych.
ROZUMIEM
|